Excerpt from Chapter V (The Long Peace) of The Better Angels of Our Nature by Steven Pinker

“Suppose you live in a place that has a constant chance of being struck by lightning at any time throughout the year. Suppose that the strikes are random: every day the chance of a strike is the same, and the rate works out to one strike a month. Your house is hit by lightning today, Monday. What is the most likely day for the next bolt to strike your house?

The answer is ‘tomorrow,’ Tuesday. That probability, to be sure, is not very high; let’s approximate it at 0.03 (about once a month). Now think about the chance that the next strike will be the day after tomorrow, Wednesday. For that to happen, two things have to take place. First lightning has to strike on Wednesday, a probability of 0.03. Second, lightning can’t have struck on Tuesday, or else Tuesday would have been the day of the next strike, not Wednesday. To calculate that probability, you have to multiply the chance that lightning will not strike on Tuesday (0.97, or 1 minus 0.03) by the chance that lightning will strike on Wednesday (0.03), which is 0.0291, a bit lower than Tuesday’s chances. What about Thursday? For that to be the day, lightning can’t have struck on Tuesday (0.97) or on Wednesday either (0.97) but it must strike on Thursday, so the chances are 0.97 x 0.97 x 0.03, which is 0.0282. What about Friday? It’s 0.97 x 0.97 x 0.97 x 0.03, 0.274 [sic]. With each day, the odds go down (0.0300…0.0291…0.0282…0.0274), because for a given day to be the next day that lightning strikes, all the previous days have to have been strike-free, and the more of these days there are, the lower the chances are that the streak will continue. To be exact, the probability goes down exponentially, accelerating at an accelerating rate. The chance that the next strike will be thirty days from today is 0.97 ^ 29 x 0.03, barely more than 1 percent.

Almost no one gets this right. I gave the question to a hundred Internet users, with the word next italicized so they couldn’t miss it. Sixty-seven picked the option ‘every day has the same chance.’ But that answer, though intuitively compelling, is wrong. If every day were equally likely to be the next one, then a day a thousand years from now would be just as likely as a day a month from now. That would mean that the house would be just as likely to go a thousand years without a strike as to suffer one next month. Of the remaining respondents, nineteen thought that the most likely day was a month from today. Only five of the hundred correctly guessed ‘tomorrow.’

Lightning strikes are an example of what statisticians call a Poisson process (pronounced pwah-sonh), named after the 19th-century mathematician and physicist Siméon-Denis Poisson. In a Poisson process, events occur continuously, randomly, and independently of one another. Every instant the lord of the sky, Jupiter, rolls the dice, and if the land snake eyes he hurls a thunderbolt. The next instant he rolls them again, with no memory of what happened the moment before. For reasons we have just seen, in a Poisson process the intervals between events are distributed exponentially: there are lots of short intervals and fewer and fewer of them as they get longer and longer. That implies that events that occur at random will seem to come in clusters, because it would take a nonrandom process to space them out.

The human mind has great difficulty appreciating this law of probability. When I was a graduate student, I worked in an auditory perception lab. In one experiment listeners had to press a key as quickly as possible every time they heard a beep. The beeps were timed at random, that is, according to a Poisson process. The listeners, graduate students themselves, knew this, but as soon as the experiment began they would run out of the booth and say, ‘Your random event generator is broken. The beeps are coming in bursts. They sound like this: “beepbeepbeepbeepbeep…beep…beepbeep…beepitybeepity-beepbeepbeep.”’ They didn’t appreciate that that’s what randomness sounds like.

This cognitive illusion was first noted in 1968 by the mathematician William Feller in his classic textbook on probability: ‘To the untrained eye, randomness appears as regularity or tendency to cluster.’ Here are a [couple] examples of the cluster illusion.

The gambler’s fallacy. Many high rollers lose their fortunes because of the gambler’s fallacy: the belief that after a run of similar outcomes in a game of chance (red numbers in a roulette wheel, sevens in a game of dice), the next spin or toss is bound to go the other way. Tversky and Kahnemann showed that people think that genuine sequences of coin flips (like TTHHTHTTTT) are fixed, because they have more long runs of heads or of tails than their intuitions allow, and they think that sequences that were jiggered to avoid long runs (like HTHTTHTHHT) are fair.

Constellations. My favorite example was discovered by biologist Stephen Jay Gould when he toured the famous glowworm caves in Waitomo, New Zealand. The worms’ pinpricks of light on the dark ceiling made the grotto look like a planetarium, but with one difference: there were no constellations. Gould deduced the reason. Glowworms are gluttonous and will eat anything that comes within snatching distance, so each worm gives the others a wide berth when it stakes out a patch of ceiling. As a result, they are more evenly spaced than stars, which from our vantage point are randomly spattered across the sky. Yet it is the stars that seem to fall into shapes, including the ram, bull, twins, and so on, that for millennia have served as portents to pattern-hungry brains. Gould’s colleague, the physicist Ed Purcell, confirmed Gould’s intuition by programming a computer to generate two arrays of random dots. The virtual stars were plonked on the page with no constraints. The virtual worms were given a random tiny patch around them in which no other worm could intrude. They are shown in [the picture above]; you can probably guess which is which. The one on the left, with the clumps, strands, voids, and filaments (and perhaps, depending on your obsessions, animals, nudes, or Virgin Marys) is the array that was plotted at random, like stars. The one on the right, which seems to be haphazard, is the array whose positions were nudged apart, like glowworms.”

The full book can be found here.